Topic 9-
Column space and Nullspace

Def: Let A be matrix.
The solutions \vec{x} to the equation $A \vec{x}=\overrightarrow{0}$ form the nullspace of A.
The space spanned by the columns of A is called the columnspace of A. We denote the nulspace of A by $N(A)$. We denote the column space of A by $R(A)$
Theorem: If A is $m \times n$ then $N(A)$ is a subspace of \mathbb{R}^{n} and $R(A)$ is a subspace of \mathbb{R}^{m}.

Def: The nullity of A is defined to be the dimension of the nullspace of A.
The rank of A is defined to be the dimension of the column space of A.

Ex: Let $A=\left(\begin{array}{ccc}1 & 0 & -1 \\ 2 & 0 & -2\end{array}\right)$
Let's find some vectors in the nullspace of A.

$$
\overbrace{\left(\begin{array}{lll}
1 & 0 & -1 \\
2 & 0 & -2
\end{array}\right)}^{A} \overbrace{\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)}^{\vec{x}}=\overbrace{\binom{0}{0}}^{\overrightarrow{0}}
$$

We need to find \vec{x}^{\prime} 's that solve the above $\overrightarrow{A x}=\overrightarrow{0}$.
If $\vec{x}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$, then

$$
=\binom{0}{0}
$$

So, $\vec{x}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ is in the nullspace of A.
If $\vec{x}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$, then

$$
\begin{aligned}
A_{\vec{x}}^{\vec{x}} & =\left(\begin{array}{ccc}
1 & 0 & -1 \\
2 & 0 & -2
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
& =\binom{(1)(1)+(0)(1)+(-1)(1)}{(2)(1)+(0)(1)+(-2)(1)}=\binom{0}{0}
\end{aligned}
$$

So, $\vec{x}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ is in the nullspace of A.
Let's find some vectors in the column space of A.
Recall that the column space is the subspace spanned by the columns of A.

$$
A=\left(\begin{array}{lll}
1 & 0 & -1 \\
2 & 0 & -2
\end{array}\right)
$$

columns of A are: $\binom{1}{2},\binom{0}{0},\binom{-1}{-2}$
A vector in the column space of A has the form

$$
a\binom{1}{2}+b\binom{0}{0}+c\binom{-1}{-2}
$$

Where a, b, c can be any real numbers.
For example if $a=5, b=25, c=12$ then we get

$$
\begin{aligned}
& \text { then we get } \\
& \binom{-7}{-14}=5\binom{1}{2}+25\binom{0}{0}+12\binom{-1}{-2}
\end{aligned}
$$

So, $\binom{-7}{-14}$ is in the column space of A.

If $a=1, b=10^{6}, c=2$, then we get

$$
\binom{-1}{-2}=1 \cdot\binom{1}{2}+10^{6} \cdot\binom{0}{0}+2 \cdot\binom{-1}{-2}
$$

So, $\binom{-1}{-2}$ is in the colvmn space of A.

Let's figure out another way to think of the column space.
A vector in the column space has the form:

$$
\begin{aligned}
& a\binom{1}{2}+b\binom{0}{0}+c\binom{-1}{-2} \\
= & \binom{1 \cdot a}{2 \cdot a}+\binom{0 \cdot b}{0 \cdot b}+\binom{-c}{-2 c} \\
= & \binom{1 \cdot a+0 \cdot b+(-1) c}{2 \cdot a+0 \cdot b+(-2) c}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\begin{array}{lll}
1 & 0 & -1 \\
2 & 0 & -2
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \\
& =A\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
\end{aligned}
$$

So, \vec{d} is in the column space of A if there exists a vector $\vec{x}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ where $A \vec{x}=\vec{d}$.
For example, from above we got

$$
\binom{-1}{-2}=1 \cdot\binom{1}{2}+10^{6} \cdot\binom{0}{0}+2 \cdot\binom{-1}{-2}
$$

$$
=\underbrace{\left(\begin{array}{ccc}
1 & 0 & -1 \\
2 & 0 & -2
\end{array}\right)}_{A} \underbrace{\left(\begin{array}{c}
1 \\
10^{6} \\
2
\end{array}\right)}_{\vec{x}}
$$

If one thinks of A as a function that takes vectors $\vec{x}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ from \mathbb{R}^{3} and outputs vectors $\overrightarrow{A x}$ in \mathbb{R}^{2} the the column space of A is the range of this function.

Here's a picture.

$$
\begin{gathered}
A \vec{x}=\left(\begin{array}{lll}
1 & 0 & -1 \\
2 & 0 & -2
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\binom{a-c}{2 a-2 c} \cdot \mathbb{R}^{2} \\
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \cdot \\
\left(\begin{array}{l}
1 \\
10^{6} \\
2
\end{array}\right) \cdots\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\binom{a-c}{2 a-2 c} \\
\binom{-1}{-2} \\
\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \cdot
\end{gathered}
$$

Here is a theorem to help us find a basis for the column space

Theorem: Let A be a matrix. Reduce A down to row -echelon form, suppose R is that reduced matrix.
The columns of A that correspond to the columns of R that contain the leading 1's in R form a busis for the column space of A.

Ex: Let $A=\left(\begin{array}{lll}1 & 0 & -1 \\ 2 & 0 & -2\end{array}\right)$
Find bases for $N(A)$ and $R(A)$. Find the nullity and rank of A. Let's find the column space $R(A)$

$$
\begin{aligned}
& \underbrace{\left(\begin{array}{ccc}
1 & 0 & -1 \\
2 & 0 & -2
\end{array}\right) \xrightarrow[R]{-2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 0 & 0
\end{array}\right)}_{A} \\
& R=\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 0 & 0
\end{array}\right) \leftarrow \begin{array}{cc}
\text { circle columns } \\
\text { in } R & w / \text { leading I's }
\end{array} \\
& A=\left(\begin{array}{lll}
1 & 0 & -1 \\
2 & 0 & -2
\end{array}\right) \Leftarrow \begin{array}{l}
\text { circle the } \\
\text { corresponding } \\
\text { columns of } A
\end{array}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \text { Thus, } \begin{aligned}
R(A) & =\operatorname{span}\left(\left\{\binom{1}{2},\binom{0}{0},\binom{-1}{-2}\right\}\right) \\
& =\operatorname{span}\left(\left\{\binom{1}{2}\right\}\right)
\end{aligned} \\
& =\text { what we just calculated }
\end{aligned}
$$

Basis for R(A) is ($\left.\begin{array}{l}1 \\ 2\end{array}\right)$.
Why did this happen?
If \vec{V} is in $R(A)$ above then

$$
\begin{aligned}
\text { If } \vec{v} \text { is in } \\
\begin{aligned}
\vec{v} & =c_{1}\binom{1}{2}+c_{2}\binom{0}{0}+c_{3}\binom{-1}{-2} \\
& =\binom{c_{1}-c_{3}}{2 c_{1}-2 c_{3}} \\
& =\left(c_{1}-c_{3}\right)\binom{1}{2}
\end{aligned}
\end{aligned}
$$

Since a basis for $R(A)$ has \square one vector in it, the rank of A is $\operatorname{dim}(R(A))=1$.

Now let's work on $N(A)$.
We need to find all vectors \vec{x} where $A \vec{x}=\overrightarrow{0}$.

$$
\underbrace{\left(\begin{array}{lll}
1 & 0 & -1 \\
2 & 0 & -2
\end{array}\right)}_{2 \times 3} \overbrace{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)}^{\overbrace{3 \times 1}^{\vec{x}}}=\overbrace{\binom{0}{0}}^{\overrightarrow{0}}
$$

This becomes

$$
\binom{x-z}{2 x-2 z}=\binom{0}{0}
$$

This gives

$$
\begin{aligned}
x-z & =0 \\
2 x-2 z & =0
\end{aligned}
$$

$$
\left.\left(\begin{array}{lll|l}
1 & 0 & -1 & 0 \\
2 & 0 & -2 & 0
\end{array}\right) \xrightarrow{-2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) 0 .\right)
$$

This gives
$\frac{\text { leading variables }}{x}$
(x) $-z=0$
(1) $0=0$ $\frac{\text { free variables }}{y, z}$

$$
\begin{align*}
& x=z \tag{1}\\
& y=s \\
& z=t
\end{align*}
$$

$$
x=z=t
$$

So,

$$
\begin{aligned}
& \text { So, } \\
& \left.\begin{array}{l}
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
t \\
s \\
t
\end{array}\right)
\end{array}\right)=\left(\begin{array}{l}
t \\
0 \\
t
\end{array}\right)+\left(\begin{array}{l}
0 \\
s \\
0
\end{array}\right) \\
& \\
& \\
& =t\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+s\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
\end{aligned}
$$

So, $\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ span $N(A)$.
You can verify that $\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ one lineally independent.
Thus, a basis for $N(A)$ is $\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$

Therefore, the nullity of A is

$$
\operatorname{dim}(N(A))=2
$$

Note:

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
1 & 0 & -1 \\
2 & 0 & -2
\end{array}\right) \text { is } \\
& 3=2+1 \\
& \uparrow \\
& \left.\left(\begin{array}{c}
\text { \# of } \\
\text { column } \\
\text { of } A
\end{array}\right)=\begin{array}{l}
\text { nullify } \\
\text { of } A
\end{array}\right)+\begin{array}{c}
\text { rank } \\
\text { of } A
\end{array}
\end{aligned}
$$

$$
\text { is } \begin{array}{r}
2 \times 3 \\
4
\end{array}
$$

$$
q
$$

$$
3=\# \text { of }
$$

columns

Ex: Same question but for

$$
A=\left(\begin{array}{ccc}
1 & -1 & 3 \\
5 & -4 & -4 \\
7 & -6 & 2
\end{array}\right)
$$

Let's do $N(A)$ first

This becomes

$$
\left(\begin{array}{c}
x-y+3 z \\
5 x-4 y-4 z \\
7 x-6 y+2 z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

That is

$$
\begin{aligned}
x-y+3 z & =0 \\
5 x-4 y-4 z & =0 \\
7 x-6 y+2 z & =0
\end{aligned}
$$

$$
\left(\begin{array}{lc|c}
1 & -1 & 3 \\
\left.\left(\begin{array}{ll|l|l}
5 & -4 & -4 & 0 \\
7 & -6 & 2 & 0
\end{array}\right) \xrightarrow\left[-7 R_{1}+R_{3}\right)+R_{3}\right]{-5 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & -1 & 3 & 0 \\
0 & 1 & -19 & 0 \\
0 & 1 & -19 & 0
\end{array}\right) .
\end{array}\right.
$$

$$
\xrightarrow{-R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & -1 & 3 & 0 \\
0 & 1 & -19 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

This gives

$$
\begin{array}{r}
\text { his } x+3 z=0 \\
y-19 z=0 \\
0=0
\end{array}
$$

(1)
$\frac{\text { free variables }}{z}$

We get

$$
\begin{aligned}
& x=y-3 z \\
& y=19 z \\
& z=t
\end{aligned}
$$

(3) $z=t$
(2) $y=19 z=19 t$
(1)

$$
\begin{aligned}
x & =y-3 z \\
& =19 t-3 t \\
& =16 t
\end{aligned}
$$

Thus, $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ is in $N(T)$ if

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
16 t \\
19 t \\
t
\end{array}\right)=t\left(\begin{array}{c}
16 \\
19 \\
1
\end{array}\right)
$$

So, $\left(\begin{array}{c}16 \\ 19 \\ 1\end{array}\right)$ spans $N(T)$.
You can check this is a lin. ind.
set becave if $c_{1}\left(\begin{array}{c}16 \\ 19 \\ 1\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
then $\left(\begin{array}{c}16 c_{1} \\ 1 c_{1} \\ c_{1}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ and $c_{1}=0$.

Thus a basis for $N(T)$ is $\left(\begin{array}{c}16 \\ 19 \\ 1\end{array}\right)\left[\begin{array}{c}99 \\ 20\end{array}\right.$
So, $\operatorname{dim}(N(T))=1$.
Let's find a basis for $R(T)$
we already redveed A above.
Like this:

$$
\begin{aligned}
& \underbrace{\left(\begin{array}{ccc}
1 & -1 & 3 \\
5 & -4 & -4 \\
7 & -6 & 2
\end{array}\right)}_{A} \underbrace{\xrightarrow[-7 R_{1}+R_{3} \rightarrow R_{3}]{-5 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc}
1 & -1 & 3 \\
0 & 1 & -19 \\
0 & 1 & -19
\end{array}\right)}_{R} \\
& \underbrace{-R_{2}+R_{3} \rightarrow R_{3}}_{\text {LR e }}\left(\begin{array}{ccc}
1 & -1 & 3 \\
0 & 1 & -19 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

So we have

$$
\begin{aligned}
& R=\left(\begin{array}{c|c}
(1) & -1 \\
0 & 3 \\
0 & 1 \\
0 & -19 \\
0 & 0
\end{array}\right) \quad \begin{array}{l}
\text { circle the } \\
\text { columns } \\
\text { of } R \text { with } \\
\text { leading } 1^{\prime} / 5
\end{array} \\
& A=\left(\begin{array}{ccc}
1 & -1 & 3 \\
5 & -4 & -4 \\
7 & -6 & 2
\end{array}\right) \quad \begin{array}{l}
\text { circle the } \\
\text { corresponding } \\
\text { columns in A }
\end{array}
\end{aligned}
$$

A basis for the column space is $\left(\begin{array}{l}1 \\ 5 \\ 7\end{array}\right),\left(\begin{array}{l}-1 \\ -4 \\ -6\end{array}\right)$.
Thus the rank of A is $\operatorname{dim}(R(A))=2$.
Note: $3=1+2$

$$
\left(\begin{array}{c}
\# \text { of } \\
\text { columns } \\
\text { of } A
\end{array}\right)=\binom{\text { nullify }}{\text { of } A}+\binom{\text { rank }}{\text { of } A}
$$

Note

$$
\underbrace{\left(\begin{array}{c}
3 \\
-4 \\
2
\end{array}\right)}_{\begin{array}{c}
3 \text { rd colvmn } \\
\text { of } A
\end{array}}=-16 \underbrace{\left(\begin{array}{l}
1 \\
5 \\
7
\end{array}\right)}_{\begin{array}{c}
1 \text { st } \\
\text { column }
\end{array}}-19 \underbrace{\left(\begin{array}{c}
-1 \\
-4 \\
-6
\end{array}\right)}_{\begin{array}{c}
2 n d \\
\text { column }
\end{array}}
$$

this explains why we didn't need it in the basis for R(A).

Theorem (Rank-Nullity Theorem)
Let A be an $m \times n$ matrix.

$$
\begin{aligned}
& \text { Then, } \\
& m=\operatorname{dim}(N(A))+\operatorname{dim}(R(A)) \\
& \binom{\#}{\text { columns })}=\operatorname{nullity}(A)+\operatorname{rank}(A)
\end{aligned}
$$

Then,
(Maybe skip this in class)
Ex: Suppose that A is a matrix where a basis for its column space is

$$
\left\{\left(\begin{array}{c}
\text { space is } \\
5 \\
3 \\
3 \\
-1 \\
2
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0
\end{array}\right)\right\}
$$

Also suppose that A has 6 columns. Find the nullity of A.
Solution: We will use the rank/ nullity theorem which says

$$
\begin{aligned}
& \text { (lity theorem which says } \\
& \qquad=\underbrace{\operatorname{rank}(A)}_{\begin{array}{c}
\text { dimension } \\
\text { of column column } \\
\text { space of } A
\end{array}}+\underbrace{\text { nullity }(A)}_{\begin{array}{c}
\text { dimension } \\
\text { of nullspace } \\
\text { of } A
\end{array}}
\end{aligned}
$$

\# columns of column of nullspace
of A of A
From above a basis for the column
space has 2 elements. So, rank $(A)=2$.
Thus nullity $(A)=6-\operatorname{rank}(A)=6-2=4$.

